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ABSTMCT 

The sha f t  whirl ing c r i t i c a l  speeds f o r  t h e  M - 1  f u e l  turbopump assembly 
a r e  presented i n  t h i s  r epor t .  The roller bearing loads caused by sha f t  whir l ing 
and other  sources a r e  a l s o  discussed. 

The predicted c r i t i c a l  speeds a r e  16,000 rpm f o r  t h e  Model I turbopump, 
15,700 rpm f o r  t h e  Model I1 turbopump with an in te r im inducer,  and 18,000 rpm 
f o r  t h e  Model I1 turbopump with t h e  f i n a l  inducer,  
f o r  t h e  Model I and Model I1 turbopumps a r e  11,700 rpm and 13,225 rpm, 
respec t ive ly .  

Nominal operat ing speeds 

r 
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I. SUMMARY 

The a n a l y t i c a l  determination of sh f t  whir l ing c r i t i c a l  speeds d bear ing 
loads f o r  the  Model I and Model I1 f u e l  turbopumps i s  de l inea ted  here in .  
i s  bas i ca l ly  t h e  same as the  Model I1 except f o r  the  turb ine  end i n  t h a t  t he  Model I 
turbopump has one turb ine  wheel while the Model I1 has two tu rb ine  wheels. 

The Model I 

The nominal operating s h a f t  speeds for both turbopumps (Model I and Model 11) 
a re  l l . , 7 O O  and 13,225 rpm, respec t ive ly .  These a re  s u f f i c i e n t l y  below t h e i r  f i r s t  
c r i t i c a l  speed t o  preclude bear ing loads of magnitude i n  excess of the  r o l l e r  bear-  
ing capac i t i e s .  
15,700 rpm f o r  t he  Model I1 with i n t e r i m  inducer,  and 18,000 rpm for t h e  Model I1 
with f i n a l  inducer.  

The c r i t i c a l  speeds predicted a re  16,000 rpm f o r  t h e  Model I, 
v 

Bearing loads from sources other  than s h a f t  whir l ing (e .g . ,  engine accelera-  
t i o n s ,  gimbal snubbing, dece lera t ions ,  e t c . )  a r e  presented and combined i n t o  the  
t o t a l  p red ic ted  reac t ions .  A s  t h e  t o t a l  reac t ions  on the  r o l l e r  bear ings a re  l e s s  
than t h e  pred ic ted  and t e s t  demonstrated capac i t i e s ,  they should not cause bear ing 
f a i l u r e  during the  required l i f e  of t h e  turbopump. 

Experimental and t h e o r e t i c a l  evaluat ion and c o r r e l a t i o n  of r o l l e r  bear ing 
spr ing  r a t e - load  r e l a t ionsh ips  was accomplished. The turb ine  bear ing support hous- 
ing spr ing  constant  was a l s o  evpluated both experimentally and ana ly t i ca l ly .  

The analyses were accomplished using d i g i t a l  computer programs, which a re  
capable of accounting f o r  the  e f f e c t s  of non-linear load-def lec t ion  c h a r a c t e r i s t i c s  
of t h e  bear ings ,  gyroscopic and i n e r t i a  f o r c e s ,  shear and f l e x u r a l  de f l ec t ions  of 
t he  s h a f t ,  r o t o r  misalignment and bearing clearances,  a r4  dynamic coupling of t h e  
housing and r o t o r .  

11 e INTRODUCTION 

The l a t e r a l  v ib ra t ion  and r o l l e r  bear ing load ana lys i s  f o r  t he  M - 1  f u e l  
turbopump assembly f o r  both t h e  Model I ( s i n g l e  tu rb ine  wheel) and Model I1 (two 
tu rb ine  wheels) conf igura t ions  i s  del ineated i n  t h i s  r epor t .  

I n  addi t ion  t o  the  computation of t h e  na tu ra l  frequencies and r o l l e r  bear ing 
loads,  the following areas  were a l s o  inves t iga ted :  
a t ion  of r o t o r  blade c learances)  s h a f t  bending s t r e s s e s  caused by conica l  whir l ing,  
bear ing e a p a c l t i e s ,  and operat ing Hertz s t r e s s  l e v e l s .  

s h a f t  e l a s t i c  curves ( fo r  evalu- 

The aca lys i s  was made i n  support  of t he  design of the  M - 1  f u e l  turbopump 
which was designed, f ab r i ca t ed ,  assembled, and t e s t e d  by the  Aerojet-General Gorp. 
a t  i t s  Sacramento Plant  under Contract NAS 3-25?? for t he  National Aeronautics and - Space Administration Lewis Research Center , Cleveland, Ohio. 

Much of t h e  ana lys i s  w a s  performed using computer programs developed 
f o r  t h e  dynamic ana lys i s  of the  fue l  turbopump assembly. I n  addi t ion  
t o  providing a c a p a b i l i t y  f o r  evaluating t h e  na tu ra l  f requencies  of complex 



multi-degree-of-freedom models, these programs were a l s o  used t o  determine t h e  
mode shapes and associated shear and moment d i s t r i b u t i o n s ,  as we l l  a s  t h e  s lopes 
and de f l ec t ions  caused by harmonic forc ing  func t ions .  

111. DESCRIPTION OF OVER-ALL CONFIGURATION 

The f u e l  turbopump assembly i s  a 10-stage a x i a l  flow u n i t  designed t o  
d e l i v e r  l i q u i d  hydrogen a t  a high f lowrate .  The 10 s tages  c o n s i s t  of a f i r s t -  
s t age  mixed flow inducer and s t a t o r ,  a second-stage a x i a l  inducer and s t a t o r ,  and 
e igh t  a x i a l  mainstages. 
and a row of stator blades.  Power i s  supplied by a s ingle-  o r  double-stage 
turb ine ,  which i s  coupled d i r e c t l y  t o  the  pump r o t a t i n g  assembly. The f u e l  
turbopump assembly, i n  i t s  t r anspor t  s tand,  i s  shown i n  Figure No. 1. 

Each mainstage c o n s i s t s  of a row of r o t a t i n g  blades 

The f u e l  turbopump assembly i s  an in t eg ra t ed  design i n  t h a t  no separa te  
pump assembly, power t ransmission assembly, or t u rb ine  assembly e x i s t  as 
completely independent u n i t s .  
The turb ine  sha f t ,  which c a r r i e s  t he  turbine-end r o l l e r  bear ing,  i s  i n s t a l l e d  
d i r e c t l y  i n t o  the  pump r o t o r  by using a s e r i e s  of p i l o t  diameters and a sp l ine .  
This coupling i s  designed so that a r i g i d  j o i n t  i s  formed a t  opera t ing  temperature,  
which r e s u l t s  i n  a s i n g l e  r o t a t i n g  assembly comprised of t u rb ine  and pump 
components. 

The bear ings a r e  contained wi th in  t h e  pump envelope. 

A more complete desc r ip t ion  of t h e  turbopump i s  provided i n  o the r  NASA 
Contractor Reports. (1) (2 )  

A. MODEL I AND MODEL I1 TURBOPUMP UNITS 

There a r e  t h r e e  vers ions of t h e  M - 1  f u e l  turbopump assembly. The 
bear ings a r e  i d e n t i c a l  i n  each u n i t .  The only d i f f e rences  occur i n  t h e  f i r s t -  
s tage  inducer and tu rb ine  a r e a s .  The Model I has a s ingle-s tage  tu rb ine  and 
exhaust cone, and an in t e r im  inducer .  Most of t h e  r o t a t i n g  system f o r  t h e  s ing le  
s tage  turb ine  configurat ion i s  shown i n  Figure No. 2 .  The Model I1 has a two- 
s tage  turb ine  and t h e  same exhaust cone and inducer as the  Model I .  
u n i t  i s  i d e n t i c a l  t o  the  Model 11-A except t h a t  t h e  in t e r im  inducer i s  replaced 
with a l i g h t e r  f i n a l  inducer and the  exhaust cone i s  replaced with a hemispherical  
exhaust manifold. 

The Model 1 1 - B  

The Model I and Model 1 1 - A  a r e  intended f o r  component t e s t i n g  only.  
The Model I i s  designed t o  opera te  up t o  three- four ths  of design speed while t h e  
Model 1 1 - A  i s  capable of f u l l  speed opera t ion .  It i s  t h e  Model 1 1 - B  t h a t  i s  
intended f o r  u se  in  the  engine system. 

cl) "Mechanical Design of a Two Stage Impulse Turbine for t h e  Liquid Hydrogen 
Turbopump of t h e  M - 1  Engine," NASA CR-54821, 1966 
"Mechanical Design of t he  M-1 Axial Flow Liquid Hydrogen Pump," NASA 
CR-54823 196 e 
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Figure 1 

I Fuel Turbopump Assembly 
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:he guide vane housing, located d i r e c t l y  above t h e  b a l l  bearings 
It provides  a s e t  of  guide vanes t h a t  ( F i g x e  No. 31, serves two functions.  

dir 'e2t t k e  f l u i d  flow from t h e  f i r s t - s t a g e  inducer t o  t h e  second-stage inducer 
and it s5rves as a bear ing housing, which supports t h e  pump-end bearing package. 
All t h r u s t  loa4s and pump end radial loads are t r ansmi t t ed  through t h i s  housing, 

bear ing  package. 
wires which o r i g i n a t e  wi th in  t h e  bearing package. 

. whi?t? a, lso ccnt2 ins  passages for bearing coolant f low,  both i n  and out of t h e  
This housing contains passages used f o r  rou t ing  instrumentation 

. 
Tke s t a t i o n a r y  components at t h e  t u r b i n e  end cons i s t  of t h e  tu rb ine  

bear ing  homing support frame, i n l e t  manifold, and exhaust cone. 

The t u r b i n e  bearing housing t r ansmi t s  t h e  r a d i a l  loads from t h e  
t>srb ine  bear ing  t o  t h e  pump discharge housing. 
a r e  lo -a t ed  i n  she  housing. 

Coolant passages for t h e  bearing 

Zkin support frame i s  made up of t h r e e  con ica l  segments t h a t  a r e  
fabrl - a t ~ . d  from sheet  stock. Each segment i s  continuous f o r  approximately 
72-3egrees of t h e  circumference. 
f o r  Y he t i i rbine manifold, coolant l i n e s ,  and instrumentation. 

The openings between t h e  segments a r e  requi red  

The t u r b i n e  i n l e t  manifold is a cons tan t  a r e a  t o r u s  containing 
37 nozzle vanes. The manifold i s  in su la t ed  t o  minimize t h e  t r a n s f e r  of hea t  t o  
-pmp components. Heat s h i e l d s  and a metal s e a l  a r e  provided t o  confine a l l  
hot  gas flow r.o t h e  t u r b i n e  a r e a  and exhaust system. 

:he exhaust cone i s  f ab r i ca t ed  from sheet  metal  and i s  designed t o  
d i r e  +, t h e  exhaust gases i n t o  a t e s t  stand exhaust l i n e .  The model 11-B has 
a k e m l  s y k e r i c a l  exhaust .manifbld, wh5ch has o u t l e t s  for ducts t h a t  rou te  t h e  exhaust 
gases t o  t h e  ox id ize r  pump tu rb ine  i n l e t  manifold. 

A I  1 r o t a t i n g  components a r e  o f  f l igh t -weight  design. Weight r e d x t i o n  
' r c - ~ . ~ ' s  a v i t a l  fa:tor i n  obta in ing  a n  acceFtakle c a l x l a t e d  c r i t i c a l  speed f o r  t k e  
f'yi ~3 1 t',r c,ic pcq  assembly 

c -r, i lontrast  t o  t h e  lightweight, r o t a t  ivLg components, t h e  e x t e r i o r  
~IC'LS:?~, w % i  ch a r e  machined from c a s t h g s ,  a r e  of  heavy cons t ruc t ion .  roqxnen+ ,  
w~igk* w 8 q  c ~ l y  a rnisor cons idera t ion  when f 'unrtion and schedule lead t i n e  weye  
J. r s ~ j = : e j . .  

3 4  f u e l  t7Lrbopump assembly rotor support system i s  designed so  
thst * 9 e  rafiial loafis a r e  t r ansmi t t ed  from t h e  r o t o r ,  throijgh t h e  r o l l e r  beariygs,  
+>O ' ! l Z  ""sing. :he t h r u s t  loads a r e  t ransmi t ted  from t h e  r o t o r ,  through t h e  
b a l l  t;caiir gs, t o  t h e  housing. 
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Figure 3 

Model I Turbopump Cross-sect ion 
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, The b a l l  bearings a r e  ground as a s e t  t o  guarantee propor t iona te  
load sharing. 
can t ransmi t  a m a x i m  r a d i a l  load o f  approximately 200 lb. 
by mounting t h e  t h r u s t  bearings i n  a r a d i a l l y  f l e x i b l e  housing, which ensures t h a t  
t h e  r o l l e r  bearings c a r r y  v i r t u a l l y  a l l  of t h e  r a d i a l  loads.  

The t h r u s t  bearing system i s  designed so t h a t  t h e  b a l l  bearings 
This i s  accomplished 

E. METHOD OF SUPPORT FOR FUEL TUFENPUMP ASSWLY HOUSING 

The f u e l  turbopump assembly i s  secured t o  t h e  t e s t  s tand  or engine 
by supporting s t r u t s  (see Figures No. 4, 5, and 6) which are connected t o  the 
engine a t  t h r e e  po in t s .  
near  t h e  pump cen te r  of g r a v i t y  and t h e  t h i r d  a c t s  as a s t a b i l i z e r .  

Two of t h e  connection po in t s  a r e  loca t ed  i n  a plane 

The method of a t t ach ing  t h e  f i e 1  turbopump assembly t o  t h e  engine or 
t e s t  s tand  def ines  t h e  spr ing  system between t h e  turbopump and i t s  re ference  
plane ( f e e . ,  ground). Because t h e  s t i f f h e s s  of t h e  supporting s t r u t s  has some 
e f f e c t  upon t h e  c r i t i c a l  speeds and bearing r eac t ions ,  t h e  strut s t i f f n e s s  was 
evaluated. 

IT. OPEFATING CONDITIONS 

A. PURKISE OF FUEL TUFBO€" ASSEMBLY 

The purpose of t h e  M-1 h e l t u r b o p w n p  i s  t o  supply l i q u i d  hydrogen 
t.0 t h e  engine system. 
type  pump t h a t  i s  d i r e c t l y  driven by a two-stage, a x i a l  flow impulse type,  gas 
t w b i n e  ( s e e  F igure  NO. 7) .  

The turbopump cons i s t s  of a 10-stage axial flow, r eac t ion -  

R. RJMP DESIGN CRImRIA(3) 

The pump nominal design flowrate i s  approximately 60,000 g a l  per 
minuke. 
temperature,  and nominal discharge pressure i s  1800 p s i a  a t  nominal opera t ing  
s h a f t  speed o f  13,225 spm. A t  
%kc engine rominal operating speed, t h e  pump s h a f t  power i s  74,138 horsepower. 
-:he maximum design sha f t  power i s  119,725 horsepower. 

I t s  nominal i n l e t  p ressure  i s  30.8 p s i a  for -421'F l i q u i d  hydrogen 

The maximum des ign  s h a f t  speed i s  14,550 rpm. 

c. 

:he tb-rbine nominal design flowrate i s  99.3 lb /sec  at a nominal 
des2g.I; p s  i n l e t  temperature o f  l@OO°F. 
IC .  lW0 F s i a  and nominal design t u r b i n e  e x i t  p re s sz re  i s  214 ps i a .  
d r i v e  gas  i s  f'urnished by t,he engine system gas genera tor  and c o n s i s t s  of 
spproximat3ky 90% gaseous hydrogen and 10% steam. 

Kominal design t u r b i n e  i n l e t  pressure 
The t u r b i n e  

(3) 

( 4 )  i b i d .  

?4-1 Engine Desi,n Information Report, Aerojet-General Report No. 9430-DIE-1, 
L6 0-t 196L. 
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v 0 LATERAL VIBMTION MODEL 

A. MATHEXITICAL MODEL 

The l a t e r a l  v i b r a t i o n  and bear ing load c h a r a c t e r i s t i c s  of t h r e e  f u e l  
turbopump assembly conf igura t ions  were evaluated. The f i r s t  conf igura t ion  i s  a 
Model I design t h a t  has a 93 l b  in te r im inducer and a 215 l b  f i r s t - s t a g e  t u r b i n e  
wheel. A cross-se,:tion of t h e  Model I turbopump i s  shown i n  Figure No. 3. The 
second and t h i r d  configurations a r e  Model I1 designs.  
in te r im inducer with f i r s t -  and second-stage tu rb ine  wheels t h a t  weigh 180 l b  and 
128 l b ,  respec t ive ly .  

of t h e  f i n a l  inducer has been proven a n a l y t i c a l l y  but it has not been f ab r i ca t ed .  
An axial s e c t i o n  view of t h e  Model I1 turbopump i s  shown i n  F igure  No. 7. 

The second model has an 

The t h i r d  has a f i n a l  inducer t h a t  weighs approximately 73 I b  
with the  ,same turbine wheaJs being (used. The f e a s i b i l i t y  and . s t ruc tu ra l  i n t e g r i t y  t 

The r a t i o  of t h e  mass of t h e  housing t o  t h e  mass of t h e  r o t a t i n g  
system was s u f f i c i e n t l y  low (approximately 7.5 t o  1) t o  j u s t i f y  t h e  inc lus ion  
of s t a t o r  e f f e c t s  i n  t h e  mathematical model. 
housing i s  assumed t o  terminate at  t h e  10 degree elbow at  t h e  pump end and t o  t h e  
r i g h t  o f  t h e  tu rb ine  i n l e t  manifold (Figure No. 3). 
i n l e t  t o r u s ,  p a r t  o f  t h e  tu rb ine  i n l e t  l i n e ,  and t h e  t u r b i n e  exhaust housing a r e  
assumed t o  be concentrated a t  t h e  t u r b i n e  end. 

For purposes of a n a l y s i s ,  t h e  

The weight of t h e  t u r b i n e  

A c ross -sec t ion  of the'Model I f u e l  turbopump assembly and t h e  
lumped-mass parameter model t h a t  was ,used i n  t h e  a n a l y s i s  a r e  shown i n  F igure  No. 8. 
The mass of t h e  r o t a t i n g  system and t h e  hous-jng; a r e  considered t o  be concentrated 
at d i s c r e t e  po in t s  (lumped-mass) and t h e  elements t h h t  connect t h e  lumped masses 
a r e  considered t o  be beam elements t h a t  have f l e x u r a l  and shear s t i f f n e s s e s  but 
no mass. 

The r o t a t i n g  system i s  connected t o  t h e  housing by sp r ings  (K ) 
and I$,). 
of t h e  housing (e.g., inducer guide vanes and t h e  t u r b i n e  bear ing  housing). 

P These represent t h e  s t i f f n e s s e s  of t h e  bearings and some p a r t s  

Springs zomec t ing  t h e  s t a t o r  t o  ground were not included i n  t h i s  
model as they were found t o  have neg l ig ib l e  inf luence  upon the  wh i r l i ng  c r i t i c a l  
speeds. This i s  discussed f u r t h e r  i n  Sec t ion  V . r  ? .  

The mechanical and phys ica l  p r o p e r t i e s  of each bay a r e  i temized i n  
2a.ble I. A bay cons i s t s  of a hXnped mass and one-half of t h e  e l a s t i c  element 
on each s i 3 e  t h a t  ccnnects t h e  masses t o  t h e  l e f t  and r i g h t  of t h e  mass being 
conei3erc.j. ( s e e  Figure No. 9).  

E. L E T ~ O D  OF NTALYSIS 

Ihe method t h a t  was used t o  analyze t h e  l a t e r a l  v i b r a t i o n  cha rac t e r -  
i s t i ; s  o f  t he  f u e l  turbopump assembly i s  d e t a i l e d  i n  Appendix A. 
method i s  a modified Myklestad-Thomson type  s o l u t i o n  f a c i l i t a t e d  by a matrix 
fGr:rdle.tion and programe3 f o r  d i g i t a l  computer a p p l i c a t i o n .  Free ,  forced ,  and 
forced-dan;ped v ib ra t ion  programs were developed; however, only t h e  f i rs t  two 
werP Liti l izp3 f c r  the analyses presented i n  t h i s  r e p o r t .  

B r i e f l y ,  t h i s  

Page 1 2  
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C SPECIAL CONSIDERATIONS 

(5) Natural  Frequency Analysis -- of the  FTPA F ig id  Body S t r u t  Support System, 
Aero j e t  -General Report No. I SA-FTFA-121, Rev. B,  Apr i l  1965. 

1. Roller  Bearing Spring Rates 

The inf luence of t h e  r o l l e r  bear ing spr ing r a t e s  upon c r i t i c a l  
speed makes it imperative t h a t  exact  value of spr ing r a t e  be  known. This i s  
shown i n  Figures  No. 10 and 11. The bear ing spr ing r a t e s  have been experimentally 
and a n a l y t i c a l l y  evaluated. Generally,  t h e  experimental da t a  and t h e  t h e o r e t i c a l  
r e s u l t s  compared qui te  wel l .  
r e l a t ionsh ips  f o r  both the  pump and tu rb ine  r o l l e r  bear ings a r e  shown i n  
Figures  No. 12 through 16. 
presented i n  Appendix B .  

The t h e o r e t i c a l  and experimental  spr ing r a t e - load  

The b a s i s  f o r  t h e  de r iva t ion  of t h e  spr ing  r a t e s  is 

2. Turbine Bearing Housing Spring Rate 

The f l e x i b i l i t y  of t he  tu rb ine  bear ing housing causes the  apparent 
t u rb ine  bear ing  spring r a t e  t o  be reduced. 
Figure No. 17a Because t h e  f l e x i b i l i t y  of t he  turb ine  bear ing support s i g n i f i c a n t l y  
a f f e c t s  t h e  c r i t i c a l  speed, it i s  a l s o  necessary t o  evaluate  t h e  tu rb ine  bear ing 
housing spr ing  r a t e ,  
experimentally examined. 
i n  Appendices C and D .  

The equivalent  spr ing  r a t e  i s  shown i n  

The bear ing  housing s t i f f n e s s  has been a n a l y t i c a l l y  and 
The theore t ica , l  and experimental  analyses  aye presented 

3. Turbopump Assembly Support F l e x i b i l i t y  

A desc r ip t ion  of  t h e  supporting s t r u t s  were given i n  Sect ion 
1II.E. The spring r a t e  of t h e  supporting s t r u t s  v a r i e s  depending upon the  
d i r e c t i o n  of t r a n s l a t i o n  of t h e  f u e l  turbopump assembly. 
t h e  e f f e c t s  of the support f l e x i b i l i t y  upon the  s h a f t  c r i t i c a l  speeds, an e f f e c t i v e  
spr ing  r a t e  has been evaluated i n  t h e  plane t h a t  conta ins  t h e  c e n t e r l i n e s  of t h e  
engine and f u e l  turbopump assembly as wel l  a s  i n  t h e  plane t h a t  i s  perpendicular  t o  
t h e  f i r s t  plane.  Therefore,  t he  values  derived represent  approximately maximum 
and minimum values of strut spr ing  r a t e .  
t h e  e f f e c t  of s t r u t  s t i f f n e s s  upon the  f u e l  turbopump assembly c r i t i c a l  speeds. 

For purposes of es t imat ing  

This permits bounds t o  be placed regarding 

The e f f ec t ive  s t r u t  spr ing r a t e ' 5 ) ,  a c t i n g  a t  t h e  turbopump 
assembly cen te r  of g rav i ty ,  and i n  the  plane t h a t  conta ins  the  c e n t e r l i n e s  of t he  
engine and f u e l  turbopump assembly i s  approximately 0,64 (106) l b / i n .  I n  t h e  plane 
perpendicular t o  the f i r s t  p lane  the  spr ing r a t e  i s  approximately 0.31 (lo6) l b / in .  
These spr ing r a t e s  were used i n  an ans lys i s  wherein t h e  e n t i r e  turbopump assembly 
was considered as a r i g i d  body and the  s t r u t  support  system a s  spr ings .  

The corresponding uncoupled n a t u r a l  f requencies  a r e  25.0 and 
17.5 cps (1500 and 1050 rpm) . 
survey was conducted of t he  Model I f u e l  turbopump assembly assembled i n  the  t e s t  
s tand.  

Thus, no s i g n i f i c a n t  change i n  t h e  c r i t i c a l  speed near  
t he  design operat ing range i s  expected. Subsequent t o  t h e  ana lys i s ,  a resonant 

T 

Natural  frequencies of  t he  r i g i d  body f u e l  turbopump assembly on i t s  support 
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Figure 14 

Turbine Bearing Spring Rate 
vs. Load - 21 Rol le rs  (P/N 288420) 



Figure 15  

Turbine Bearing Spr ing  Rate 
VS. Load - 26 Rol l e r s  (P/N 288340) 
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Spring Rate vs.  Load of 26 R o l l e r  Turbine Bearing Used i n  Analysis 
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stmts  were found t o  be 6.5, 21, 24, 60,  an3 67 cps. 
st?p;?ort f l e x l b i l i t y  shoxld nct signifEcantly a f f e c t  t h e  s h a f t  c r i t i c a l  speed. 

Therefore, turbopump 

4. Residual  Imbalance 

The imbalance o f  each major component r e s u l t i n g  from t h e  l i m i t s  
i n  balancing c a p a b i l i t i e s  i s  shown i n  Figure No. 18. 
by t h e  r e s i d a a l  inbalances a r e  given i n  ?able 21. Because t h e  r o t o r  i s  not 
balarxed as a complete assembly, diametral  runouts and to l e rances  of p i l o t  
diameters could cause some s h a f t  misalignment. 
der,ided t o  balance t h e  t u r b i n e  r o t o r  and main pump r o t o r  as a subassembly. 
Thus, t h e  e f f e c t s  of t h e  p i l o t  runouts a t  t h e  t u r b i n e  end w i l l  be removed 
during t h i s  subassembly balancing. The r e s u l t i n g  bearing loads, which a r e  
q u i t e  small, a r e  given i n  Table 11. 

Bearing reactioris caused 

Following t h e  ana lys i s ,  it was 
f 

5. Damping 

'The e f f e c t s  of  t h e  various forms of damping upon r o t a t i n g  
machinery in-.lude a s l i g h t  s h i f t  i n  t h e  c r i t i z a l  speeds, a l i m i t  on s h a f t  d i s -  
placements, and a reduct ion  i n  bearing react ions.  
by r o l l i n g  bearings and opera tes  i n  a very low v i s c o s i t y  and l i g h t  f l u i d  medium 
( l i q u i d  hydrogen), damping of any s i g n i f i c a n t  magnitude i s  not expected. 
fo re ,  it i s  not included i n  t h e  ana lys i s  presented i n  t h i s  r epor t .  

Because t h e  r o t o r  i s  supported 

There- 

6. Conical Whirl Mode of Motion Allowed by Bearing Clearances 

A probabl  de of motion of t h e  r o t o r  under opera t ing  condi t ions ,  
i s  one of con ica l  whirl ing r67?7), as indica ted  i n  Figure No. 19. Another poss ib l e  
motion i s  a c y l i n d r i c a l  whirl ing mode, but because t h e  r e s u l t i n g  bearing leads 
w i l l  not be as severe as for t h e  conica l  mode, due t o  the smaller overhung 
mass e c c e n t r i c i t i e s ,  only t h e  con ica l  mode was evaluated. 
loads a r e  discussed i n  t h e  ensuing section. 

The r e s u l t i n g  bear ing 

D. SEAPIN? FJ3AL'TIOTaS A.ND CF.IZI7P-L SPEFD 
I 

Bearing clearanzes a r e  t h e  major sozrce o f  bearing r eac t ions .  The 
:learan:es a l lcw t h e  r o t o r  masses t o  r o t a t e  at some pos i t i on  o t h w  t h a r  the 
geometric cm+,er def ined  by t h e  bear ing a x i s .  T h i s  type of r o t a t i o n  res?nlts i n  
c o n i c a l  whi r l .  The r o t o r  masses, which r equ i r e  an a d d i t i o n a l  fo rc ing  f i n c t i o n ( 8 )  
t o  i n i t i a t e  a nonica l  precess ion  of t h e  sha f t  a x i s ,  a u s e  c e n t r i f u g a l  fo rces  t h a t  
a r e  balanzed by t h e  bearing r eac t ions .  
most l i k e l y  kle ,-am& by t h e  imperfect mass balayse of t h e  r o t o r  t u rb ine  wheels 
o r  indu-er.  

Zhis a d d i t i o n a l  fo rc ing  func t ion  w i l l  

Rearing c learances  a r e  3 .5- rssed  i -  AppeIzdix E. 

(6) 

( 7 )  

(8) Morris ,  Je, loc .  c i t .  

Momis,  J., Isme Inpact of Bearing Clesrances on Shaf t  S t a b i l i t y "  
A i r x a f t ,  Engineering, pp 382-383, Depsmber 1957. 
Den Har-echanical Vi-brat i ocs  , New York, McGraw-Bill, 
1956, Fourth Edi t ion ,  pp 252-265. 
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TABLE I1 

Pump Bearing 

1 1 

Turbine Bearing 

1 Model I TPA Bearing Reactions Resul t ing  From Residual Imbalance 

Source 

Balancing t o  .35 in-oz and 
.75 in-oz at planes I and I1 
respec t ive ly  ( r e f e r  Figure 18)  

E c c e n t r i c i t i e s  i n  p i l o t  
diameters (refer Figure 1 8 )  

TOTAL 640 1030 

NOTE: The Model I assembly first c r i t i c a l  speed i s  
ca lcu la ted  t o  be 16,000 rpm 
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A s  previously shown, t h e  bearing spr ing r a t e s  a r e  not cons6ant ( i . e . ,  
For purposes of comparison, t h e  t h e  load-deflect ion r e l a t i o n s h i p  i s  not l i n e a r ) .  

bearing reac t ions  a r e  shown i n  Figure No. 20 f o r  both constant value and load 
dependent spr ing r a t e s .  Note t h a t  t h e  l i nea r  treatment of a nonl inear  system 
tends  t o  give lower bear ing reac t ions  i n  t h e  operat ing speed range. 
value of t h e  f irst  c r i t i c a l  speed i s  somewhat underestimated. Bearing reac t ions  
f o r  bearings t h a t  a r e  represented by nonlinear spr ings  f o r  t h e  Model I1 configurat ions 
a r e  shown i n  Figures  No. 2 1  and No. 22. 

Also, t h e  

E . ADDITIONAL ANALYSIS DESIGN INFORMe-TION 

The shaf t  bending s t r e s s e s  caused by conica l  whir l ing and assoc ia ted  
unbalance forces  a r e  shown i n  Figure No. 23. Because they a r e  very small, t hese  
s t r e s s e s  can be ignored i n  evaluat ing the s t r u c t u r a l  i n t e g r i t y  of t h e  r o t a t i n g  
system. Hoop s t r e s s e s ,  caused by ro ta t ion ,  con t ro l  t h e  design s t r u c t u r a l  
i n t e g r i t y .  

s 

The sha f t  and s t a t o r  e l a s t i c  curves of t h e  Model I1 turbopwnp assembly 
for various operat ing speeds a r e  shown i n  Figure No. 24. 
used t o  evaluate  t h e  r o t o r  running clearances. 

The e l a s t i c  curves a r e  

Hertz s t r e s s e s  a s  a funct ion of  bearing reac t ion  a r e  shown i n  
Figures  No. 25 and No. 26. 

V I  e OTHER SOURCES O F  BEARING LOADS 

Bearing loads from sources o ther  than sha f t  whir l ing a r e  shown i n  Table I11 
( e  .g., l ong i tud ina l  and l a t e r a l  acce le ra t ions  , gimbal snubbing, gyroscopic r eac t ion  
caused by gimbal angular ve loc i ty  and hydraulic imbalance). 

VI1 CONC Lus IONS 

The bearing loads for t h e  pump and tu rb ine  r o l l e r  bearings a r e  given i n  
Table N. The total  loads a r e  caused by t h e  c e n t r i f u g a l  loads from t h e  conica l  
whir l ing mode of  motion p lus  a l l  o ther  sources of bearing loads considered i n  
t h i s  r e p o r t .  

C r i t i c a l  speed analyses  typ ica l ly  tend t o  show higher r e s u l t s  than  a r e  
obtained experimentally.  This is  primarily because of t h e  exclusion or 
approximate treatment of some po ten t i a l ly  s i g n i f i c a n t  f a c t o r s  ( i . e .  , bearing spring 
r a t e ,  dynamic coupling of r o t o r  t o  housing, shear de f l ec t ions ,  e t c . ) .  

I n  t h i s  r epor t ,  a f a i r l y  rigorous method f o r  p red ic t ion  sha f t  whir l ing . c r i t i c a l  speeds and assoc ia ted  bearing react ions has been presented. Many f ac to r s  
found t o  be i n f l u e n t i a l  i n  t h e  ana lys i s  have been experimentally and a n a l y t i c a l l y  
inves t iga t ed .  The r o l l e r  bear ings,  Load-deflection r e l a t ionsh ips ,  t h e i r  load 
c a p a c i t i e s ,  and t h e  tu rb ine  bearing support housing spr ing  r a t e  were determined 
by t e s t s .  Consequently, t h e  predict ions set f o r t h  i n  t h i s  repor t  warrant a high 
degree of  confidence. 
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TABLE I11 

Source 

Pump Hydraulics 

Bearing Loads At t r ibu tab le  t o  Sources Other Than Shaf t  Whirl 

Load a t  14,550 rpm, Kips 

Pump Bearing Turbine Bearing 

0.70 1.40 

3,55 

v i e r a t  ions  : 

5.98 

I 0.80 

10 g ' s  longi tudina l  
1 g l a t e r a l  

Engine Gimbal Snubbing 

Engine Gimballing Gyroscopic 
Action of Rotor 

TOTAL 

1.64 

1.02 1.02 

. 
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I e INTRODUCTION 

This program has t h e  c a p a b i l i t y  f o r  analyzing t h e  f r e e  or  forced- 
undamped, lateral  v ib ra t ions  of two e l a s t i c a l l y  coupled lumped parameter beams. 
Natural frequencies ,  mode shapes,  as w e l l  as a s soc ia t ed  shea r  and moment d is -  
t r i b u t i o n s  can be computed. 
shea r s ,  moments, s lopes ,  and de f l ec t ions  a t t r i b u t a b l e  t o  harmonic fo rc ing  
funct ions.  Shear de f l ec t ions ,  ro t a ry  i n e r t i a ,  and gyroscopic e f f e c t s  f o r  ro- 
t a t i n g  s h a f t  ana lyses  are a l s o  included i n  t h e  program capab i l i t y .  

The program can compute t h e  amplitudes of t h e  

The sp r ing  supports  may be input as e i t h e r  constant  values  o r  load 
dependent func t ions  def ined by 

B K = A o P  

where A and B are cons t an t s  and P is app l i ed  load ,  o r  by a t a b l e  of  P 
vse K poin ts .  

The fol lowing is a list of appropriate  nomenclature. 

L - Length of E l a s t i c i t y  Element ( in . )  

E - Modulus of E l a s t i c i t y  ( p s i )  

I - Area Moment of  I n e r t i a  o f  Cross Sec t ion  (in. ) 

C - Shape Constant f o r  Shear Def lec t ion  (in.’2) 

4 

G - Modulus o f  R ig id i ty  (psi) 

W - Weight of Lumped Mass ( l b )  
2 - Polar  Mass Moment of I n e r t i a  (lb-in-sec ) 5 

2 
Ix - 
K - Spring Constant ( l b / ine )  

ed - Shaf t  Whirl Frequency (cps)  

Diametral Mass Moment of I n e r t i a  (lb-in+-sec ) 

A 0  - Increment i n  Frequency (cps)  

d - Offset  Between Corresponding S t a t i o n s  i n  Two Beams (in.) 

r( - Forcing Function Coeff ic ient  of 0 (lb-sec2) 
2 

Note: 
A l l  primed q u a n t i t i e s  r e f e r  t o  t h e  bottom beam and s p r i n g s  between i t  and ground. 

A l l  unprimed q u a n t i t i e s  r e f e r  t o  top beam and sp r ings  between t h e  beams, 
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Shear ( l b )  

Moment (in.-lb) 

Slope ( r a d )  

Deflect ion ( in . )  

E l a s t i c i t y  Transfer Matrix 

Mass Transfer  Matrix 

S t a t e  Vector 

11. GEMERAL PROCEDURE 

Analyses of complex multi-degree-of-freedom systems, of which the ro to r -  
s t a t o r  system is ones a r e  commonly undertaken using matr ix  t r a n s f e r  techniques 
and t h e  methods used here in  are based upon t h i s  technique, 
reduced t o  an idea l ized  mass-elastic model ( s e e  Figure 8 on page 15) and, then 
subdivided i n t o  bays of the type shown i n  Figure 9 on page 18, 

The system is first 

Q T r  T O  t 
End 

I I T  I I I  << j t  
nk I -  

S t a r t  

1st I n t e r i o r  Poin t  - 2nd I n t e r i o r  Poin t  

Then a column matrix containing a l l  the types of load and de f l ec t ion  v a r i a b l e s  
which can occur i n  t he  system is made. This column matr ix  is  c a l l e d  the 
" s t a t e  vector." 
d i t i o n s ,  both known and unknown. Next, a matrix equat ion is wr i t t en  which 
transforms the va r i ab le s  of the s t a t e  vector  from t h e i r  values  a t  t h e  start 
t o  t h e i r  values at t h e  first i n t e r i o r  po in t  i n  the  system. 
the  condi t ions a t  t h e  second i n t e r i o r  po in t  t o  t h e  first i n t e r i o r  po in t  in -  
t e r n  r e l a t e s  t h e  second poin t  t o  t h e  start. Thus far, two matrix t r ans fo r -  
mation equations a re  required:  the  first is f o r  a t ransformation of v a r i a b l e s  
across  the  idea l ized  mass (Figure A - 1  and A-2) and t h e  second is for trans- 
formation of var iab les  ac ross  t h e  i d e a l i z e d  e l a s t i c i t y  (Figures  A-3 and A-4) .  
This procedure is continued u n t i l  the  last i n t e r i o r  po in t  and a l s o  t h e  start 
is  r e l a t e d  t o  the end poin t ,  
the end, t he  unknown condi t ions a t  t h e  start and at t h e  end can be evaluated. 
Once a l l  the boundary condi t ions at the  start are known9 a l l  i n t e r i o r  con- 
d i t i o n s  can be evaluated by re-walking through t h e  system t o  t h e  end. 

A t  the  s tar t  t h e  s ta te  vec tor  c o n s i s t s  of the boundary con- 

Further  r e l a t i n g  

Then, by u t i l i z i n g  the  boundary condi t ions  a t  

c 
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A t  t he  start of  the f i r s t  bay N = 0, thus 

I -  

Assuming the model starts w i t h  e l a s t i c  elements w e  have going across  
the  f i r s t  elements i n  bay 1. 

And across  t h e  first lumped masses in bay 1 

Next, across  the second e l a s t i c i t y  

I n  l i k e  manner, transformations can be made across each bay, expres- 
s i n g  each s t a t e  vector  i n  terms of the  previous s t a t e  vec tor ,  and thus i n  
terms of the  i n i t i a l  s ta te  vector .  

I n  expanded form w e  g e t ,  

- -  

&TA 

The r e s u l t i n g  above simultaneous equation are reduced t o  f o u r  simul- 
taneous equations by v i r t u e  of t he  four  known boundary condi t ions a t  each 
o f  s t a t i o n s  N = 0 and N = NSTA. 
boundary condi t ions at s t a t i o n  N = 0 a r e  evaluated. 

Then, solving simultaneously the  remaining 
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For ins tance ,  i f  
0 0 

The following system of equat ions a r e  solved: 

dil da 41 $24 da d17 dts die d~ ””] {[h 
$3 dss dn’dss dsp 
du & do d e  dH A 0  

state vec to r s  are evaluated by repea t ing  t h e  chain mul t ip l ica t ion .  
After  t h e  entire condi t ions  of s t a t e  a t  N = 0 a r e  known, a l l  o the r  

All [F~,J] have elements containing 0 . Thus t o  obta in  the dynamic 
response over t he  e n t i r e  s h a f t  speed range of i n t e r e s t ,  the  aforementioned 
procedure is accomplished f i r s t  f o r  an i n i t i a l  given s h a f t  whi r l  frequency 
cc) 
quencies,  separated by the  increment ACd 
ponse of t h e  system in the range of i n t e r e s t .  

e Then t h e  procedure is repeated fo r  the  a d d i t i o n a l  number of f r e -  
e r equi red  t o  de f ine  the  res- 

111. THEDRY AND DERIVATION OF EQUATIONS 

A,, STATE VECTOR 

The s t a t e  vector  <A)iis defined as the  column matr ix  of t h e  
s h e a r ,  moment, slope,and d e f l e c t i o n  of  t h e  beam or beams a t  the  end of bay 
N o  The n i n t h  element of the  s t a t e  vec tor  is the constant  one which permits 
t h e  inc lus ion  o f  the load constant  i n  the  t r a n s f e r  matr ices .  

Y‘ 

B e  MASS TRANSFER MATRIX 

Figure A - 1  i l l u s t r a t e s  a f r e e  body diagram of the  lumped masses 
a t  bay N and the  forces and moments which a c t  upon t h e  sameo 
ponding equations of equilibrium and compat ibf l i ty  are presented in the  same 

The corres -  
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f i g u r e  

Some of the  terms may requi re  more explanat ion than is given 
i n  the  nomenclaturee ?"ne term &,,e r ep resen t s  t he  "forcing function" 
caused by imbalance or con ica l  whir l ing mode of motion and its associa-  
t e d  c e n t r i f u g a l  forces .  The s t a t o r  has an element l abe led  dN ; this 
element has i n f i n i t e  s t i f f n e s s  and p e r m i t s  the  lumped masses of the r o t o r  
and s t a t o r  a t  bay N t o  be loca ted  a t  pos i t i ons  o the r  than immediately 
above or below t h e  o ther ,  The term (GN - IXN 3~ O2 accounts f o r  
what is o f t e n  c a l l e d  the  "gyroscopic effect ."  This term is l a r g e s t  in 
the  bays t h a t  contain inducer or turbine wheels. (1) 

The t r a n s f e r  matrix across  the  r o t o r  and s t a t o r  mass at bay 
N is given i n  Figure A-2. 

C, ELASTICITY TRANSFER MATRIX 

A f r e e  body diagram of the e l a s t i c  elements t h a t  connect the 
ad jacent  lumped masses is shown in Figure A-3. 
of equi l ibr ium and deformation a r e  a l s o  included i n  Figure A-3. 

The r e s u l t i n g  equations 

The terms i n  the  equation a r e  s t ra ight forward  with t h e  pos- 
s i b l e  exception of t he  term 

This component expresses the  de f l ec t ion  r e s u l t i n g  from shear  
which may be of importance in shor t  stubby s h a f t s ,  

The t r a n s f e r  matrix across t h e  r o t o r  and s t a t o r  e l a s t i c  
element is i l l u s t r a t e d  i n  Figure A-4, 

De PROCEDURE FOR NON-LINEAR LOAD-DEFLECTION BEARING SUPPORTS 

I n  applying t h i s  program t o  the  l a t e r a l  v i b r a t i o n s  of turbo- 
machinery, t he  rotor is represented as one beam and the  housing as a second 
beam, The bear ings connecting them a r e  represented as spr ings ,  However, 
t h e  l o a d  d e f l e c t i o n  r e l a t ionsh ips  of t y p i c a l  turbomachinery bear ings are 
not  l i n e a r ,  
t h e  form. 

One r e l a t i o n  given by Palmgren ( 2 )  f o r  r o l l e r  bear ings is of 

11) 
( 2 )  

For a more complete discussion,  s e e  Den Hartog, J. P , ,  ope c i t .  
Palmgren, A,  B a l l  and Rol le r  Bearing Engineering, SKF I n d u s t r i e s ,  Inc, 

3 rd  Edi t ion ,  1959 
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For a given e f f e c t i v e  l eng th ,  e 

which is a non-linear funct ion of P. The force on t h e  bear ing,  P, is a 
funct ion of t h e  unbalance i n  the systems, and is magnified g r e a t l y  in the 
neighborhood of resonance- As bearing loads  inc rease ,  the va lue  of K ,  o r  
s t i f f n e s s ,  increases ,  The e f f e c t  upon a p l o t  of bearing load versus  shaft 
speed is t o  cause a leaning-over of the  curve ( 3 ) *  

The computer program t r e a t s  t h i s  e f f e c t  by ca l cu la t ing  a sp r ing  
rate 

where A and B a r e  cons tan tso  K is ca l cu la t ed  
from the  above equation and then a forced-vibrat ion ana lys i s  is  performed. 
F’rom the  r e s u l t i n g  de f l ec t ions ,  the  load i n  the  bear ing is ca lcu la t ed  
P = KY o r ,  P = KY-KY’ i f  working with a f l e x i b l e  housing. This value of 
P wil1 , in  genera1,not agree with the  value Po upon which K was based. 
Thus, a new K is ca lcu la ted  and the  cycle  repeated u n t i l  the  r e s u l t i n g  P 
agrees  with the  assumed P A l l  of t h i s  i t e r a t i o n  and convergence is 
based upon a s ing le  frequency Q Once convergence on K is achieved f o r  
a given 0 t h e  frequency is changed u n t i l  the  range of i n t e r e s t  is in -  
ves t iga ted ,  The projected Po f o r  subsequent speeds is given by ( s t a r t i n g  
with the 4 th  0 

A value of P is assumed (PJ 

0 

p,‘ I = 3.O(pi-’ - PI-2) f Bi-3 

This p red ic t ion  equation w a s  found t o  be needed t o  obta in  convergence i n  
a s u f f i c i e n t l y  small number of i t e r a t i o n s  as t h e  approaches resonant 
a 0  

~~ ~~ 

( 3 )  Den Hartog, J, Po, op0 c f t ,  
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I. INTRODUCTION 

During t h e  work for  Subcontract E2907E10(~), Aerojet-General asked New Depar- 
The following t u r e  t o  develop s p r i n g  rate models f o r  a c y l i n d r i c a l  r o l l e r  bearing. 

Appendix c o n s i s t s  b a s i c a l l y  o f  ma te r i a l  taken from t h e  New Departure Report and 
sunmarizes t h e  resu l t s  of  t h e  requested analysis. 
methods presented here in  is now i n  use, 

A computer program based upon t h e  

The following 

PD 

e 

8, 
Z 

D 

R 

k 

6 

6N 
s ocf 

K 

b 

CF 

L 

Den 

P 

a 

E 

is a list of nomenclature p e r t i n e n t  t o  t h i s  computer program: 

Radial  Play 

Angular Posit ion 

Angular L i m i t  o f  t h e  Load Zone 

P i t ch  Circle Diameter 

Roller Diameter 

Radial  Load 

Radial  Deflection 

Deflect ion 

Normal Deflect ion 

High Speed, Zero Load Def lec t ion  

Spring Constant 

Spring Exponent 

Cen t r i fuga l  ForceXRoller 

Rol ie r  Length 

Density 

Normal Load 

Semi-width of Contact Area 

Modulus of E l a s t i c i t y  

(1) Subcontract t o  provide a n a l y t i c a l  support  €or s o l v i n g  M - 1  Engine bear ing  
problems 
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P Poisson s Rat i o  

r Radius of Curvature 

N Number of Ro l l e r s  

n E r r o r  Tolerance 

11, ROLLER ELEMENT SPRING E Q U A T I O N  

A ,  INTRODUCTION 

The so lu t ion  of t h e  r o l l e r  bear ing  mechanics problem i s  dependent upon 
a knowledge of t h e  sp r ing  equation of t h e  r o l l e r  element aga ins t  a raceway. 
s ea rch  of t h e  l i t e r a t u r e  revealed work i n  t h i s  area by Fo 1 i n  Germany and 

A 

Lundberg i n  Sweden, This r epor t  w i l l  use Lundberg’s work f!? 1 

B o  BASIC EQUATION 

The bas ic  equation presented by Lundberg re la tes  t o  t h e  approach between 
a cy l inde r  and a plane body, This  equation i s  

‘IT L2 E ’  In 6 = 2P 
T L ”  L P 

Equation ( 1) 

where 

P = normal load on cy l inde r  

L = l ength  of cy l inde r  

E ”  = E / ( l = p 2 )  

where 

E; = Modulus of e l a s t i c i t y  of t h e  c y l i n d e r  and plane body, 

= Poi s sonDs  r a t i o  of t h e  two bodies,  

Equation ( l d  is independent of t h e  diameter  of t h e  c y l i n d e r , )  (Note: 
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Lundberg proceeds with t h e  b a s i c  equation and af ter  several  i n t e r -  
mediate s t e p s  a r r i v e s  . .  a t  an approximate power function r e l a t i o n s h i p .  

2 6 Z 0,0062 POo9 

where S is i n  mm and P i n  Kg. The use of t h e  above approximation 
is found i n  Palmgren(2). 

C. EXPERIMENTAL CONFIRMATION OF EQUATION ( 1 )  

If a r o l l e r  were placed between two f l a t  p l a t e s ,  t h e i r  normal approach 
under load would be twice t h a t  given by Equation (1). 
was conducted and t h e  r e s u l t s  are compared with twice t h e  value as ca l cu la t ed  by 
Equation (11, These r e s u l t s  a r e  shown i n  Figure B-1. 

An experiment of t h i s  type 

Do POWER FUNCTION REPRESENTATION OF EQUATION (1 )  

The d a t a  upon which t h e  above graph is  based are p l o t t e d  i n  Figure B-2 
on a log-log scale, The d a t a  poin ts  e s s e n t i a l l y  p l o t  as a s t r a i g h t  l i n e .  This  
g ives  r i se  t o  a power func t ion  r ep resen ta t ion ,  i.e., 

P = K S b  Equation ( 2 )  

where b i s  t h e  s lope  o f t h e  s t r a i g h t  l i n e  and may be obtained from 
any two p o i n t s  (1 )  and ( 2 )  as shown below, 

b = I n  P2 - In P1 
1 1 1 6 ~  - I n s 1  

Equation ( 3 )  

The constant K is found from 

K =  P 

Sb 
F i g u r e  B-2 a l s o  shows t h a t  t h e  s lope does change over t h e  range of loading con- 
s i d e r e d ,  This  i n d i c a t e s  t h e  need f o r  considering t h e  expected load range which 
t h e  c y l i n d e r s  w i l l  be subjec ted  t o  if a power function r ep resen ta t ion  i s  t o  be 
used, 
i n  the discuss ion  of t h e  app l i ca t ion  of Equation (41, 

This a spec t  of t h e  problem was considered and is discussed i n  more d e t a i l  
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E ,  MODIFICATION OF EQUATION (1) 

Equation (1) may be modified t o  account f o r  t h e  effect  of curva ture  
of t h e  plane body, This r e s u l t s  i n  

Equation (4) 
1 7(L2 E '  2 r  t D 

2P ( r 
I n  b =  2P 

T E 8  L 

where D = diameter of cy l inde r  

r = r ad ius  of curva ture  of o t h e r  body i n  t h e  plane perpendicular  
60 t h e  axis of the cy l inde r ;  r is p o s i t i v e  o r  nega t ive  depending upon i ts  r e l a t i o n -  
s h i p  with D i n  accordance with h e r t z  theory  of contac t  stress and d e f l e c t i o n s ,  

For example, 

Negative r 
( o u t e r  r i n g )  ( b )  P o s i t i v e  r 

Tinner  r i n g )  

F, APPLICATION OF EQUATION ( 4 )  TO A BEARING 

The radius ri  of an inne r  race is a p o s i t i v e  curva ture  (see example 
above 1 0  

P i  = A (z-D) 

Z = p i t c h  diameter bo r o l l e r  c e n t e r s  

Then from Equation (4) 

2 
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s o =  2 p o  In 
T f E '  L 

%L2 E '  2 Pi 
S i  = I n  

VE' L P i  

n~~ E' ( , z~  ) 
PO 

I n  l i k e  manner f o r t h e  o u t e r  race - r o l l e r  spr ing  

Equation ( Sa) 

Equat ion ( 5b 1 

G ,  ESTIMATE OF LOAD RANGE TO WHICH ROLLERS I N  A BEARING WILL BE SUBJECTED 

The maximum load which the  saddle  r o l l e r  w i l l  be subjected t o  a t  low 
speed is approximated by 

Equation (6) 

where 

K = t o t a l  s t a t i c  r a d i a l  load on t h e  bear ing 

N = number of r o l l e r s  

Equation ( 6 )  forms a reasonable b a s i s  f o r  t h e  upper l i m i t  of r o l l e r  
load used i n  e s t a b l i s h i n g  a power function sp r ing  equation, 

111, H I G H  SPEED MECHANICS OF A ROLLER BEARING UNDER PURE RADIAL LOADING 

A, GEOMETRICAL CONSIDERATIONS 

In  t h e  zero  load and speed condi t ion ,  one may view a r o l l e r  bear ing 
with i ts  r ings  concent r ic  and i ts  r o l l e r s  i n  l i n e  contact  with t h e  i n n e r  r ing ,  
This  is shown schematical ly  as follows: 

(*A S t re ibeck  d i s t r i b u t i o n  assuming no d iamet ra l  looseness i n  t h e  bear ing  y i e l d s  a 
Assuming some d iamet ra l  looseness  t h e  coef- c o e f f i c i e n t  s l i g h t l y  l a r g e r  than 4, 

f i c i e n t  becomes l a r g e r ,  An assumed value of 5 i s  a reasonable estimate,)  
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Inner  

Cuter 

Saddle Rol le r  

PD = Free d iamet ra l  play - 
( r a d i a l  p l ay )  

0 = Angular p o s i t i o n  
around bear ing 

Z = P i t c h  c i r c l e  diame- 
t e r  of ro l le rs .  

D = Roller diameter,  

Schematic ( 1 )  

Holding t h e  o u t e r  r ing s t a t i o n e r y ,  t h e  inner  r i n g  may be moved upward along t h e  
X-X a x i s  a f ree  amount P D / ~  before contact  i s  made by t h e  s a d d l e  r o l l e r  (see 
Schematic lb with the  o u t e r  r i n g ,  This  displaced p o s i t i o n  is shown as fol lows,  
which d e f i n e s  t h e  pos i t i on  from which d e f l e c t i o n  sha l l ,  be measured, 
having zero or  a negative r a d i a l  play,  def lec t ion  i s  measured from t h e  symmetric 
pos i t ion  

For a bear ing  
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I" 
pD - 
2 

(1 - c o s 0  1 

X - X = Axial of r a d i a l  load 
and r a d i a l  de f l ec t ion ,  

1 Y A Z t i v e  
Direct ion)  

Schematic 
'X  

Let t ing  R be equal  t o  a r a d i a l  load being t ransmi t ted  by t h e  s h a f t ,  t h e  r o l l e r  
bear ing  w i l l  d e f l e c t  an amount k, where 

k = r a d i a l  movement of t h e  inne r  r i n g  of t h e  bear ing  r e l a t i v e  
t o  t h e  ou te r  r i n g  along t h e  a x i s  of t h e  radial  load  as 
def ined by t h e  X - X axis of Schematic ( 2 )  above, 

If t h e  bear ing  is mounted on a sha f t  t h a t  is  e s s e n t i a l l y  solid and i n  a housing 
which is massive compared t o  t h e  thickness  of t h e  o u t e r  r i n g ,  it may be assumed 
t h a t  t h e  r i n g s  remain c i r c u l a r  i n  shape with deformations occuring only a t  t h e  
r o l l e r - i n n e r  race contac ts  and a t  t h e  r o l l e r - o u t e r  race con tac t so  
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Let t ing,  

Si = normal approach under load of a r o l l e r  t o  t h e  inne r  r ing .  

6, = normal approach under load of a r o l l e r  t o  t h e  o u t e r  r ing .  

The t o t a l  normal approach under load  between t h e  inne r  and o u t e r  
r i n g s  along a r a d i a l  l i n e  from t h e  bear ing  c e n t e r  i f  S where 

Equation ( 7 )  

For t h e  saddle  r o l l e r  

f o r  P 1 0,O SN = k D 

f o r  PD S 0,O sN = k - - 'D 
2 

For a r o l l e r  a t  some pos i t i on  8 around t h e  bear ing it may be 
shown t h a t  

for P D ~  0 0 0  8~ ( e )  = ( __ PD + k ) COS 8 - - PD ( a )  
2 2 

Equation (8) 

for P ~ S  O,O S, (e? = - - PD + cos e (b 1 
2 

Equation (8) is a d i r e c t  r e s u l t  of geometr ical  cons ide ra t ions ,  

B o  SPRING EQUATION OF A SINGLE ROLLER 

It was shown i n  t h e  power func t ion  r ep resen ta t ion  of Equation (1) 
t h a t  t h e  r e l a t ionsh ip  between load and d e f l e c t i o n  of a r o l l e r  a g a i n s t  t h e  inne r  
and outer  r i n g s  may be  expressed as 

Page B-8 

Equation ( 9 )  



Appendix B 

where 

P = normal load between a r o l l e r  and a raceway 

K E b = spr ing  cons tan ts  

Subscr ipt  ((i" r e f e r s  t o  inner  r ing - ro l l e r .  

Subscr ip t  "0" r e f e r s  t o  o u t e r  r i ng - ro l l e r ,  

C. H I G H  SPEED EQUILIBRIUM EQUATION FOR ROLLER 

For t h e  inne r  race r o t a t i n g  a t  some rpm N i ,  t h e  c e n t r i f u g a l  fo rce  
ac t ing  on each r o l l e r  is given by 

CF = ,279D2LZ p ( 1 - i)2 N i 2  X lo-' Equation ( 10)  

where 

.279 = constant (assumes lb- in ,  u n i t s )  
CF = cen t r i fuga l  f o r c e / r o l l e r  
L = e f fec t ive  contac t  length  of rciller 
p =  densi ty  o f  t h e  r o l l e r  material 

Under constant  speed condi t ions w i t h  no  cage forces ,  t h e  required equi l ibr ium 
condi t ion  f o r  each r o l l e r  is 

P i  + CF - Po = 0.0 Equat ion ( 11 1 

$, Free body diagram 
of  a s i n g l e  r o l l e r .  

Schematic ( 3 1 

Equation (11) may be expressed i n  terms of t h e  d e f l e c t i o n s  si and so 
by s u b s t i t u t i n g  Equation (9) f o r  Pi and Po, 
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From Equation (7) we have 

Then the equi l ibr ium equation f o r  t h e  ind iv idua l  r o l l e r  becomes 

Equation ( 12 ) 

A given value of k i n  conjunction with Equation ( 8 )  enables one t o  eva lua te  
Thus, t h e  only unknown i n  Equation ( 1 2 )  i s  

5~~ 
5 io  

Solving fo r  s i i n  Equation ( 1 2 )  may be accomplished by any of 
s e v e r a l  numerical techniques, 
t h e  s o l u t i o n  t o  t h e  r o l l i n g  element equi l ibr ium equation is  t h e  Newton-Raphson 
method, 

The method used i n  t h i s  p a r t  and d iscussed  i n  

D o  H I G H  SPEED ZERO LOAD RADIAL DEFLECTION 

If t h e  r o l l e r  bear ing  of Schematic ( 2 )  is  brought up t o  speed without 
t h e  app l i ca t ion  of any r a d i a l  load ,  t h e  r o l l e r s  w i l l  d e f l e c t  normally i n t o  t h e  
ou te r  race as a result  of c e n t r i f u g a l  fo rce ,  This means t h a t  t h e  inne r  race w i l l  
no longer be i n  contact w i t h  t h e  r o l l e r  a t  t h e  sadd le  p o s i t i o n  ( i e e e  0 = 0.0).  
Neglecting t h e  small e f f e c t  o f  unbalance r e s u l t i n g  from t h e  e c c e n t r i c  p o s i t i o n  of 
Schematic ( 2 )  t h e  inner r ace  may move upward under n e g l i g i b l e  load an amount equal  
t o  t h e  nor'mal approach i n t o  t h e  o u t e r  raceway, 

L e t t  i ng 

socf = normal approach of a r o l l e r  i n t o  t h e  o u t e r  race due t o  CF 

Then 

s o c f  = high speed, ze ro  load r a d i a l  d e f l e c t i o n  

Thus a t  a constant speed, t h e  r a d i a l  l oad  versus  d e f l e c t i o n  curve of 
t h e  bear ing  w i l l  have a rad ia l  de f l ec t ion  socf under n e g l i g i b l e  e x t e r n a l  load,  
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E. C R I T Z R I A  TO DETERMINE I F  A ROLLER IS LOADED 

1. Zero Speed 

Under zero  speed condi t ion,  Equation (8) may be used t o  determine 
t h e  ex ten t  of t h e  loaded zone around t h e  bearing. 

Thus i f  

t h e  r o l l e r  a t  t h a t  
l i m i t  of t h e  loaded zone i n  terms of t h e  angle  which s a t i s f i e d  t h e  condi t ion.  

pos i t i on  w i l l  be loaded. I n  this manner, one may de f ine  t h e  

Solving Equation ( 2 )  f o r  t h i s  c r i te r ia  y i e l d s  

Equation ( 13 1 

BL = L i m i t  of t h e  Load Zone 

2. High Speed 

Under high speed conditions t h e  cri teria used t o  determine t h e  
angle  6L a t  which t h e  inner  race becomes unloaded is  

c 
t h i s  r e s u l t s  i n ;  

'D + 260cf  1 pD t 2k 
f o r  PD 1 o,O eL = t COS 

Equation ( 13 1 

The effect  of Socf is  t o  reduce t h e  ex t en t  of t h e  loaded zonee 
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F, RADIAL LOAD (R) VERSUS RADIAL DEFLECTION (k) 

Based upon t h e  preceeding a n a l y s i s  t h e  following procedure i s  used t o  
determine t h e  r a d i a l  load r e s u l t i n g  from a given d e f l e c t i o n  k. 

( a )  Assume a value of k, 

( b l  Determine Gocf  by means of  Equations (9b)  and (10)  f o r  
Po = CF, 

Deternine t h e  ex ten t  of  t h e  loaded zone from Equation (13) .  ( c )  

( d )  For each roller pos i t i on  wi th in  t h e  loaded zone eva lua te :  

1 b from Equation ( 8 )  

2 Solve f o r  6 i n  Equation (12) 

3 Evaluate Pi from Equation ( 9 a )  

4 Evaluate t h a t  component of  P i  which con t r ibu te s  t o  t h e  
P i  ' E o s ~ )  

- 
- 
- 

r a d i a l  load ( i o e o  

( e )  Sum up t h e  ind iv idua l  con t r ibu t ion  of  each r o l l e r  i n  t h e  
loaded zone t o  a r r i v e  at t h e  r e s u l t i n g  radial  load ,  

For example: 8 = + 6 ~  
1 

R = > , pi COS e 
e L  e = -  

Equat ion ( 14 ) 

G o  ACCURACY OF MODEL USED 

The accuracy of  t h e  mathematical model used i n  p red ic t ing  t h e  r a d i a l  
d e f l e c t i o n  of a r o l l e r  bearing w i l l  depend t o  varying degrees upon t h e  following 
f a c t o r s  ; 

The r o l l e r  element sp r ing  Equations ( 9 a )  and (9b )  can be estab- 
l i s h e d  q u a n t i t a t i v e l y  e i t h e r  by empi r i ca l  means o r  as does t h i s  r e p o r t ,  from a 
mathematical model, 
t h a t  first order  agreement is found between empi r i ca l  d a t a  and a mathematical model 
derived from advanced theory of e l a s t i c i t y  cons ide ra t ions ,  
of t h i s  model can be expected t o  decrease as t h e  l eng th  of  t h e  r o l l e r  becomes 
smaller and/or if t h e  c y l i n d r i c a l  r o l l e r s  are no t  proper ly  crowned, 
rediices bu t  w i l l .  not completely e l imina te  stress concentrat ion a t  t h e  r o l l e r  ends, 
As; the  r o l l e r  length is decreased, t h e  r o l l e r  end cond i t ions  become more s i g n i f i c a n t ,  

I n  t h e  r o l l e r  element s p r i n g  equat ion  d i scuss ion ,  it i s  shown 

However, t h e  accuracy 

Proper crowning 
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The ana lys i s  considers  only pure r a d i a l  loading and assumes no 
r e l a t i v e  misalignment of t h e  raceways, 
s a t i s f a c t o r i l y  under some small misalignment, a t  present  t h e r e  i s  no mathematical 
b a s i s  of p red ic t ing  t h e  harmful e f f e c t  of misalignment upon bear ing operat ion o r  
its effect  on r a d i a l  d e f l e c t i o n ,  However, it i s  expected t h a t  increas ing  m i s -  
alignment would r e s u l t  i n  unsa t i s fac tory  bear ing performance before  it would 
measureably change t h e  bear ing ' s  def lec t ion  c h a r a c t e r i s t i c s ,  O f  t h e  d i f f e r e n t  
type of r o l l e r  designs,  t h e  c y l i n d r i c a l  one i s  most s e n s i t i v e  t o  misalignment, 
Careful  considerat ion should be given t o  minimize any condi t ion of mounting or 
loading which w i l l  r e s u l t  i n  misalignment, 

Although r o l l e r  bear ings  may opera te  

3. Assumed S t a t i c  Pos i t ion ine  of Rol le rs  

Recall t h a t  t h e  r o l l e r s  were assumed t o  e x i s t  a t  equal  i n t e r v a l s  
around the bearing with one roller being loca ted  a t  t h e  saddle  (9  = O o )  pos i t ion ,  
In  t h e  opera t ing  s ta te ,  t h e  r o l l e r s  w i l l  be moving i n t o  and out  of t h e  saddle  
pos i t i on ,  
de f l ec t ion  around some average value, While t h i s  effect does e x i s t ,  it is  no t  
s i g n i f i c a n t  provided t h e  bear ing contains  a s u f f i c i e n t  number of  rollers,, 
a l l y ,  approximately t e n  r o l l e r s  w i l l  e l imina te  any measurable pulsa t ion ,  
s ide red  i n  t h i s  r epor t  is  any r o t a t i n g  r a d i a l  unbalance or  s h a f t  whip, 
t h e s e  two f a c t o r s  could cause a pulsa t ing  de f l ec t ion ,  

Under constant  load  condi t ions,  such an ac t ion  would produce a pu l sa t ing  

Gener- 
Not con- 

E i t h e r  of 

4,, Effec t ive  Length of t h e  Rol le rs  

The mathematical model used t o  a r r i v e  a t  t h e  sp r ing  Equations (sa)  
and (9b ) ,  depends upon t h e  length  of t h e  r o l l e r ,  The e f f e c t i v e  length  of a crowned 
r o l l e r  is somewhat less  than t h e  ac tua l  length,  I n  genera l ,  an e f f e c t i v e  length  
equal  t o  ,9 of t h e  t r u e  length  i s  a reasonable representa t ion ,  However, it must 
be r e a l i z e d  t h a t  t h i s  is an area of uncer ta in ty ,  I n  view of t h e  intended use of  
t h i s  d i scuss ion  for c r i t i ca l  speed s tud ie s ,  an approach which may be use fu l  is t o  
view t h e  e f f e c t i v e  length  over a range which would be expected t o  bound t h e  t r u e  
value.  A b e s t  opinion a t  t h i s  t ime would be from .85 t o  .95, Calcula t ions  used 
over  t h e s e  l i m i t s  would provide a bas i s  f o r  upper and lower bound sp r ing  ra te  
va lues  ., 

IV, SOLUTION TO THE ROLLER ELEMENT EQUILIBRIUM EQUATION 

Equation ( 6 )  of t h e  discussion is t h e  equi l ibr ium equation of a s i n g l e  
r o l l e r  ,, 

hi b0 
For example Ki bi + CF-KO ( S N  - Si) = 0,O Equation ( 12 B 

The only unknown is si, 
T o  accomplish t h i s  t h e  Newton-Raphson i t e r a t i o n  technique i s  used, 

The problem then  is t o  so lve  for  5 i n  Equation (121, 
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Equat ion ( 13 1 

Equation ( 14 1 

An i n i t i a l  value of & = 1 ( 5  - gocf) is used. 
N - 

2 

Equation ( 14 

The change i n  s i  values between two i t e r a t i o n s  i s  A where 

A 

The i t e r a t i o n  i s  ended f o r  

where 

7 = 3 x i s  used i n  t h i s  r e p o r t ,  

The value of 3 corresponds t o  a load accuracy of from 5 t o  10 l b  pe r  inch 
of r o l l e r  length ,  

To prevent negative arguments of un rea l  s i g n i f i c a n c e  i n  Equations (13)  and 
(141, t h e  absolu te  values of t h e  arguments are used, 
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I, INTRODUCTION 

S t r a i n  and de f l ec t ion  data(1) obtained from simulated M - 1  subsca le  bear- 
ing  support  housing (P/N 291349) are d iscussed  i n  t h i s  appendix. 
of various geometrics were t e s t e d .  
l a t i n g  t h e  actual bear ing  support  housing w i l l  b e  presented. 

Five models 
However, only t h e  resul ts  of t h e  model simu- 

The tests were conducted t o  s u b s t a n t i a t e  and a i d  i n  t h e  development of 

The spring ra te  c a l c u l a t i o n s  are used i n  p r e d i c t i n g  
t h e o r e t i c a l  methods f o r  ca l cu la t ing  t h e  s p r i n g  rates of a hollow frustrum-type 
bear ing  support  housing,, 
t h e  c r i t i ca l  speeds of t h e  M - 1  f u e l  pump, 

Two tes t  cond i t ions  were used, and are r e f e r r e d  t o  as t h e  plugged and open 
conditions.  The purpose of t h e  two condi t ions  was t o  ob ta in  d a t a  t h a t  could be 
used i n  eva lua t ing  t h e  amount and type of warping of  t h e  end c i r c u l a r  shape. 
i s  shown i n  t h e  ske tch  below, 

This 

PLUGGED OPEN - 

Dial ind ica to r s  and SR-4 s t r a i n  gage data  were obtained f o r  determination 
of t h e  model de f l ec t ions ,  

(1) "S t ruc tu ra l  Test of t h e  M - 1  FTPA Subscale Bearing Support Housings", 
Aerojet-General Corporation Memorandum 885, Department 9745, 26 June 1964 
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I1 0 SUM MARY 

The s p r i n g  constant of t h e  frustrum-type bear ing  housing model obtained 
for c o r r e l a t i o n  w i t h  t h e o r e t i c a l  a n a l y s i s  i s  

For t h e  open cone 5,16 l b / i n ,  

For the  plugged cone 4012 (10l6 l b / i n ,  

111. TEST SETUP AND INSTRUMENTATION 

The 3/8 subscale bear ing  support  housing was instrumented with uni -ax ia l  
The s t r a i n  gage g r i d  l eng ths  and r o s e t t e  s t r a i n  gages, as shown i n  Figure C-1, 

were 0,25 i n ,  

The housings were a t t ached  t o  a r i g i d  deck p l a t e  ( s e e  Figure C-2) by 
t h i r t e e n  3/8-18 socket head cap screws torqued t o  300 in , - lb ,  

S t a t i c  l o a d s  were app l i ed  by a hydraul ic  ac tua to r ,  through a 50,000 l b  
BLIi load c e l l  (Model No, U 3XXA) connected t o  a yoke assembly, A 3/4-in0 diame- 
t e r  cable was secured t o  t h e  yoke and wrapped around t h e  machined groove (from 
t h e  90 degree loca t ion  t o  t h e  270 degree loca t ion )  so t h a t  t h e  l i n e  of loading 
went through t h e  2ero degree and 180 degree l o c a t i o n s  of t h e  bear ing  housing, 

Five 0,001-in0 d iv i s ion  d i a l  i n d i c a t o r s  were i n s t a l l e d  a t  t h e  ze ro  degree 
and 180 degree loca t ions  on t h e  bear ing  housing t o  determine t h e  ho r i zon ta l  
d e f l e c t i o n s  during loading, 

The appl ied  loads were monitored by an SR-4 (Model 120) s t r a i n  i n d i c a t o r  
and two 20 channel balancing and switching u n i t ,  

IV,, TEST PROCEDURE 

The bear ing  housing was subjec ted  t o  i ts  maximum load t o  e l imina te  s l i ppage  
between t h e  deck p l a t e  and t h e  t es t  housing, The load was then  r e l eased ,  t h e  
b o l t s  aretorqued, and t h e  ins t rumenta t  ion zeroed, Incremental  loads  were then  
appl ied  t o  t h e  housing p e r  t h e  following schedule, ,  

Bearing Mousing 
P a r t  Number Applied Load, ( l b )  

291349 0 8000 16,000 24,000 32,000 40,000 0 

Dial ind ica tor  and s t r a i n  gage readings were recorded a t  each incremental  
load 

P a g e  C-2 
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A 0,0043-in0 t o  0.005-in. shrink fit s o l i d  s teel  plug was placed i n  t h e  
upper r i n g  of t h e  bear ing  housing, and t h e  above tes t  procedure repea ted ,  

V O  DISCUSSION 

The d a t a  revealed a decrease of t h e  sp r ing  r a t e  when t h e  plug was i n s t a l l e d  
i n  t h e  small end of t h e  cone, 
t h e  force and moment d i s t r i b u t i o n  transmission across t h e  cone diameter. The 
d e f l e c t i o n  d a t a  measured oppos i te  t h e  poin t  of load app l i ca t ion  ind ica t ed  an 
inc rease  i n  t h e  r o t a t i o n  of t h e  load r i n g  when t h e  plug was i n s t a l l e d  which would 
inc rease  t h e  end moment on t h e  cone r e s u l t i n g  i n  a decrease of t h e  cone s p r i n g  
rate 

Analysis of  t h e  s t r a in  d a t a  ind ica t ed  a change i n  

The ca l cu la t ed  sp r ing  r a t e  of t h e  cone, P/N 291349, included t h e  co r rec t ion  
f o r  t h e  movement of t h e  cone base,  
t h e  o t h e r  cones t e s t e d ,  was a t t r i b u t e d  t o  t h e  i n a b i l i t y  of t h e  3/0-in0 diameter 
b o l t s  t o  react t h e  40,000-lb load ,  

This base movement, which d i d  not occur with 
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Figure C-1 

STRUCTURAL TEST OF THE M - 1  TPA SUBSCALE SIMULATED 
BEARING SUPPORT HOUSING - LOCATION OF STRAIN GAGES 

P a g e  C-4 
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Figure C-1 

STRUCTURAL TEST OF THE M - 1  TPA SUBSCALE SIMULATED 
BEARING SUPPORT HOUSING - LOCATION OF STRAIN GAGES 
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Turbine Bearing Housing Test Setup 
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I. INTRODUCTION 

The s ta t ic  sp r ing  ra te  of the t u r b i n e  bear ing  housing was a n a l y t i c a l l y  
pred ic ted  based upon t h r e e  methods of ana lys i s .  These methods can be i d e n t i f i e d  
as an approximate beam so lu t ion ,  a f i n i t e  e l emen t ( l )  s o l u t i o n ,  and s c a l i n g  model 
test  results.  
( t o p  view). 
(bottom view) and Figure D-2. 

The housing s t r u c t u r e  and load system are shown i n  Figure D-1 
The beam and f i n i t e  element i d e a l i z a t i o n s  are given i n  Figure D - 1  ' ,  

11. SUMMARY 
J 

The spr ing  constant  of t h e  turbine bear ing housing was est imated by t h e  
var ious  ana lys i s  methods as follows: 

Beam Approximation, K = 48.1 

F i n i t e  Element Solut ion,  K = 19,O l b / i n ,  

l b / i n .  

P e r  Model Tests, K = 32.3 l b / i n ,  

The model tests,  which are discussed i n  Appendix C ,  d i d  not e n t i r e l y  simu- 
late t h e  load system, 
prototype,  it is be l ieved  t h a t  t h e  loading on t h e  model was such as t o  preclude 
t h e  warping of t h e  end c y l i n d r i c a l  shape,, 
cluded i n  t h e  f i n i t e  element so lu t ion ,  a sp r ing  constant  within four  percent  of 
t h e  model tes t  d a t a  was obtained. 
for  t h i s  warping is considered t o  y ie ld  t h e  b e s t  p red ic t ions  of sp r ing  constant .  
( i a e e ,  K = 19.0 l b / i n e I e  

Ins t ead  of the  s inusoida l - type  loading as expected on t h e  

Furthermore, when t h e  warping was pre- 

Thus, t h e  f i n i t e  element so lu t ion  which accounts 

( 1 )  H o l i s t e r ,  G o  S o  4 Zienkiewica, O.De, S t r e s s  Analysis,  
London-New York-Sidney, John Wiley E, Sons, 1965 
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111. APPROXIMATE BEAM ANALYSIS 

L 

1.6 in. 

Shaded Area Shows 
The Idealized Section 
For Analysis. 

Bearing Load Appl 

T 
6.35R 

icat ion 

L 
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It  is recognized t h a t  t h e  a n a l y s i s  w i l l  g ive  a s t i f f n e s s  g r e a t e r  than  t h a t  
of t h e  actual pa r t .  

s p = e  '2,s PL. 1 = 71 ..5"] = 900. i n .  4 
3EI AG 4 

r 1 

.00257 + ,01813 [ ] 207 56.8~~~~5)106] = + 
:( 30)( 900)106 

= 0 0207 IlO"6P 

Therefore; Spring Constant = 48.,1 (10) 6 - l b  
i n  

I V ,  FINITE ELEMENT SOLUTION 

A computer program developed t o  analyze bodies of  revolu t ion  subjec ted  t o  
non-axisymmetric loading was u t i l i z e d .  
loading  func t ion  i n t o  a Four ie r  series rep resen ta t ion ,  ob ta in ing  a s o l u t i o n  f o r  
each Four ie r  c o e f f i c i e n t ,  and then  superposing t h e  s o l u t i o n  for  each c o e f f i c i e n t  
t o  ob ta in  t h e  t o t a l  s o l u t i o n ,  

This  s o l u t i o n  i s  based upon expanding t h e  

The model, which was t e s t e d ,  was analyzed using t h i s  f i n i t e  element computer 
program. For t h e  condition of zero warping of  t h e  c i r c u l a r  end, t h e  computer solu- 
t i o n  y i e lded  a sp r ing  ra te  of 4,O 
4.1 l b / i n .  Allowing end warping, t h e  a n a l y t i c a l  value was reduced t o  
2,4 &/in ,  

l b / i n ,  as compared t o  t h e  t es t  value of 

The f i n i t e  element a n a l y s i s  of t h e  prototype ind ica t ed  a sp r ing  ra te  of 
19,0(1.0)6 &/in.  

V O  SCALING MODEL TEST RESULTS 

According t o  t h e  f i n i t e  element s o l u t i o n  of t h e  model and prototype t h e  
scale f a c t o r  is  

SoF0 = L900(10)6 = 7,85 
2,42( 10I6 
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I t  i s  noted t h a t  t h e  model was almost a 3 /8  scale model of t h e  prototype. 
U t i l i z i n g  t h e  following s impl i f i ed  a n a l y s i s ,  t h e  scale f a c t o r  was determined upon 
t h e  b a s i s  of dimensions and material p rope r t i e s  a lone ,  

By d e f i n i t i o n ,  S,F, = 
K Model 

and: K = Kf Ks where: Kf = Flexure sp r ing  rate 
Kf + Ks 

Ks = Shear s p r i n g  ra te  

P P M M P P  K f M  + K, M 

K f M  KsM 6 

S,F, = Kf Ks x K f  + K s  = Kf K s  

K f M  KsM K f p  + K K f p  + Ksp 

Rewriting / 

I A 

Where: Kf d - E1 K s d  AG 

L3 

I o( R 3 t  A d, R t  

R3 tE  Ks o( R t G  Kf": I_ - 
L 

L3 

K P  P 
A = f and B = Ks - _m 

L e t  : 

K f M  K S M  

M Also F KfM = ZK, 
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+ A . B  

I f :  A = B a8 i n  our case, then: 

NUMERICAL CALCULATION OF SCALE FACTOR 

Prototype (Inconel  718) Model (7079 Aluminum) 

E 30(106) p s i  10.5(106)  p s i  

G 11.5(106) p s i  4 .0(106)  p s i  

R 6.44 in .  2 . 3 3  i n .  

L 5.95 i n .  2.16 i n .  

t 1 , 6 5  i n ,  0 . 6  i n .  

Kfp - 
K fM =($ ) 3 (* f, ($)( 5) 

=(-j (->’ (z) (e) 
- -  

s. F.  = 7.85 
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Appendix E 

I. INTRODUCTION 

. 

The following a n a l y s i s  determines t h e  magnitude of  t h e  forc ing  functions 
t h a t  can e x i s t  a t  t h e  p r i n c i p a l  masses due t o  bearing c learances  a t  opera t ing  
condi t ions  (i.es -423OF & 13,225 WM). 

I1 0 SUMMARY 

The f o r c i n g  func t ion  caused by con ica l  w h i r l  is defined as x ' where 

F = m e a 2  = XQ 2 

The maximum computed value of fo rc ing  func t ions  are 
1 

x I  = 4.83 lb-sec2 a t  t h e  Inducer 

2 = 3,70 lb-sec a t  t h e  Turbine No. 1 

= 4.31 lb-sec2 a t  Turbine No, 2 

111, CONFIGURATION (Pump Bearing, P/N 288260) (1lOmm) 
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111, CONFIGURATION (Turbine Bearing, P/N 2883bO) (120mm) 
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V. FORCING FUNCTIONS 

The nominal bearing c learances( l1  a t  -423OF and 13,325 RPM are 

sp = 0.0017--r.0.0022 i n .  

sT = 0 . 0 0 0 8 ~ 0 . 0 0 1 7  in .  

W I  = 133. l b  

= 130, l b  
T 1  

W 

= 128. l b  
wT2 

- 45,96 in.& 
49,46 in, - 

= ( S P  + ST)/2(42.2) = 0.0039/84.4 = 0.462 Rad 

- SP eI - - - 6 .49@= -0,0011 - 0.000315 = -Oe0014 i n ,  
2 

- - - b T  + 3,73 e = 0,00095 + 0.000181 = 0.0011 i n .  
e T 1  2 

+ 7 . 2 3 0  = 0,00095 + 0.000352 = 0.0013 i n .  
ST - -  

eT2 - 2 

(1) "Design E Development of Liquid Hydrogen Cooled 120mm Roller, l l O m m  Roller,  
& l l O m m  Tandem Ball  Bearings fo r  t h e  M - 1  Fuel Turbopump", NASA CR-54826, 
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The Centrifugal  Forces are: 

F = m e a 2  = 8 0 2  

2 = - 4,83(10"4) lb - sec  

= 3 70( lb-sec2  

2 = 4.,31(10-4) lb - sec  

211 

T 1  

T 2  

The only forcing funct ions  considered are caused by t h e  inducer and two 
turbines ,  A l l  other components are r e l a t i v e l y  small. 
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